What Can Go Wrong in Radiation Treatment:

Results from RPC Audits

Geoffrey S. Ibbott, Ph.D. and RPC Staff

Mission

The mission of the Radiological Physics Center is to assure NCI and the Cooperative Groups that institutions participating in clinical trials deliver prescribed radiation doses that are clinically comparable and consistent.

Now 42 years of experience of building an infrastructure, establishing communications with institutions, developing relationships with study groups and QA offices, and adding value to the clinical trials program

Where do we find errors?

Continue to find errors

- Credentialing
- Phantoms, benchmarks, questionnaires, rapid reviews

US Institutions & Machines

Radiotherapy Trends: 1975-2009

Patterns of Care, Owen, IJROBP, 1994; Ballas, Int. J. Radiation Oncology Biol. Phys. **66**, 2006

TLD Irradiation

Institutions receive acrylic block containing dosimeters

Verification of Standard Output

- Photon and electron beams from conventional linear accelerators
- CyberKnife
- TomoTherapy
- Gamma Knife
- Protons

TLD vs OSL

- LiF:Mg,Ti (TLD-100) capsules
- Disposable
- One reading
- Temperature and weight control
- 3 dosimeters per point
- 6 min reading time
- Dosimeter cost per check \$2.40 •

- (Al₂O₃:C) nano dots
- Reusable (dose limit ~ 10Gy)
- Re-readable
- No temp/weight ctrl, light tightness
- 2 dosimeters per point,
- ~ 2 min reading time
 - Dosimeter cost per check \$1.00

Equipment

TLD

OSL

Institutions with One or More Unacceptable TLD Measurements

70

Distribution of TLD results

Distribution of TID results

70

Distribution of TLD results

TLD measurements in proton beams

Where do we find errors?

- Remote audits of machine output \bullet 1,768 institutions, ~14,000 beams measured with TLD (2009) **On-site dosimetry reviews** \blacklozenge 50 institutions visited/yr (~150 accelerators measured) Treatment record reviews Review for GOG, NSABP, NCCTG, RTOG (brachy) Independent recalculation of patient dose Continue to find errors Credentialing
 - Phantoms, benchmarks, questionnaires, rapid reviews

The <u>only</u> completely independent comprehensive radiotherapy quality audit in the USA and Canada

- Identify errors in dosimetry and QA and suggest improvements.
- Collect and verify dosimetry data for chart review.
- Improve quality of patient care.

New audit techniques:

- 1. TomoTherapy
- 2. CyberKnife
- 3. Small field dosimetry
- 4. MLC dosimetry
- 5. Image guidance (in development)

New audit techniques:

- 1. TomoTherapy
- 2. CyberKnife
- 3. Small field dosimetry
- 4. MLC dosimetry
- 5. Image guidance (in development)

As radiotherapy treatment techniques change, so do the visit audit techniques

Reference Beam Calibration Percent of Beams out of Criteria (since 2000) <u>Photons Electrons</u> TLD (±5%) 3-5% 5-8% Visits (±3%) 2-4% 3-14%

Reference Beam Calibration Percent of Inst. with \geq 1 beam out of criteria (since 2000)

_	Photons	Electrons
TLD (±5%)	7-11%	6-12%
Visits (±3%)	~13%	~15%

On-Site Dosimetry Review

Selected discrepancies discovered 2004 – 2008

Errors Regarding	Number of Institutions (%)
Review QA Program	127 (77%)
*Wedge Transmission	53 (32%)
*Photon FSD (small fields)	46 (28%)
Off-Axis, Beam Symmetry	42 (25%)
*Photon Depth Dose	34 (21%)
*Electron Calibration	25 (15%)
*Photon Calibration	22 (13%)
*Electron Depth Dose	19 (12%)

*70% of institutions received at least one of the significant dosimetry recommendations.

Where do we find errors?

- Remote audits of machine output
- \bullet 1,768 institutions, ~14,000 beams measured with TLD (2009)
- On-site dosimetry reviews
- \bullet 50 institutions visited/yr (~150 accelerators measured)
 - Treatment record reviews
- Review for GOG, NSABP, NCCTG, RTOG (brachy)
- 9
 - Independent recalculation of patient dose
 Calculation errors, reporting errors
- Credentialing
- Phantoms, benchmarks, questionnaires, rapid reviews

RPC Patient Dose Review

- Independent calculation of tumor dose
- Agree within 5% (15% for implants)
- Verify dose, time, fractionation per protocol
- Notify institution if major deviation seen during review to prevent further deviations

Without RPC review 36% of the doses used by the study group would be incorrect

- 1% Systematic errors
- •8% Individual errors
- 27% Reporting errors

Exmples of Systematic Errors > 5% (>15%)

Error	Magnitude
TPS used wrong depth when head frame used	27%
TPS did heterogeneity corrections incorrectly	8.5%
Institution ignored effects when >50% of the field was blocked	5%
Point of calculation near edge of field	6-7%
Non-measured output with average TLD > 5%	7%
Lung correction used, not allowed on protocol	9-13%
TPS wedge factor differs from clinical wedge factor	9%

Examples of Individual Errors > 5% (>15%)

Problem	Magnitude
Addition error	9%
Hand written daily treatment record differed from Record and Verify for one field	145%
Institution treated 180 cGy/field rather than 180 cGy/day	291%
Dose reported under block for parametrial boost	21%
Inhomogeneity corrections used (not allowed on protocol)	5 – 7%
Brachytherapy shielding error	23%
Incorrect prescription points on brachytherapy	Up to 553%
Magnification error on brachytherapy	144%
Combined with incorrect prescription point	208%
Reported dose rates rather than dose for brachytherapy	Up to 480% IAEA, July 6, 2010

Where do we find errors?

- Remote audits of machine output
- \blacklozenge 1,768 institutions, ~14,000 beams measured with TLD (2009)
- 9
- On-site dosimetry reviews
- \bullet 50 institutions visited (~150 accelerators measured)
- Treatment record reviews
- Review for GOG, NSABP, NCCTG, RTOG (brachy)

Independent recalculation of patient dose
Continue to find errors

Credentialing

Phantoms, benchmarks, questionnaires, rapid reviews

RPC Phantoms

SRS Head (4)

Liver (2)

Measurement

Gamma Analysis results

Gamma Analysis results

Gamma Analysis results

AAA Profile

Pencil-Beam Profile

Phantom Results

Comparison between institution's plan and delivered dose.

Phantom	H&N	Prostate	Spine	Lung	Liver
Irradiations	752	174	19	174	23
Pass	585	143	13	124	12
Pass %	78%	82%	68%	71%	52%
Criteria	7%/4mm	7%/4mm	5%/3mm	5%/5mm	7%/4mm
Year introduced	2001	2004	2009	2004	2005
		IAEA, July 6, 2010)		

HN results grouped by TPS

Treatment	Pass	Attempts	Criteria Failed		
planning system	Rate (%)		Dose	DTA	Dose and DTA
Corvus	75	32	7	0	1
Eclipse	85	114	10	4	3
Pinnacle	73	168	33	4	8
TomoTherapy	73	22	5	1	0
XiO	73	59	7	4	5
Other	79	24	3	0	2
Total		419	65	13	19

Number of Physicists per Machine

Explanations for Failures

Explanation	Minimum # of occurrences
incorrect output factors in TPS	1
incorrect PDD in TPS	1
IMRT Technique	3
Software error	1
inadequacies in beam modeling at leaf ends (Cadman, et al; PMB 2002)	14
QA procedures	3
errors in couch indexing with Peacock system	3
equipment performance	2
setup errors	7

Brain Phantom

Selected Phantom Lab "Alderson" phantom

- Materials fall on CT#-RLSP curve
- Contains realistic bony anatomy
- Inserts with target and dosimetry will be constructed

What are the causes of errors?

Failure to learn the basics Inexperience Variations in training Mistakes at commissioning New technologies pull resources from basic QA procedures

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

http://rpc.mdanderson.org